Logarithm Properties

Logarithms
Algebra II

Julian Zhang

July 2021

1 Introduction

By now, we know how to evaluate singular logarithms, but we don't know how to solve equations containing multiple of them. We are going to introduce the 4 most important rules of logarithms, upon which all other rules can be derives. Here is a summary of them - we will go through each one, including examples and brief proofs.

Logarithm Properties:

$$
\begin{gathered}
\log _{b}(a)+\log _{b}(c)=\log _{b}(a \cdot c) \\
\log _{b}(a)-\log _{b}(c)=\log _{b}\left(\frac{a}{c}\right) \\
\log _{b}\left(a^{n}\right)=n \cdot \log _{b}(a) \\
\log _{b}(a)=\frac{\log _{c}(a)}{\log _{c}(b)}
\end{gathered}
$$

2 Product Rule

This is the product/sum rule of logarithms, allowing you to convert a sum of two logarithms into one:

Idea: Product/Sum rule:

$$
\log _{b}(a)+\log _{b}(c)=\log _{b}(a \cdot c)
$$

To better conceptualize this, let's use an example:

$$
\log _{2} 8+\log _{2} 32
$$

We know that $2^{3}=8$, so $\log _{2} 8=3$. We also know that $2^{5}=32$, so $\log _{2} 32=5$. Adding these together, we get

$$
\log _{2} 8+\log _{2} 32=3+5=8
$$

which is one way to solve this equation. However if we use your sum rule, this gives us

$$
\log _{2} 8+\log _{2} 32=\log _{2}(8 \cdot 32)
$$

$$
\log _{2} 8+\log _{2} 32=\log _{2}(256)
$$

We know that $2^{8}=256$, so we get the same answer of 8 , so our property holds true. We're going to prove this in depth later, but our example essentially boils down to

$$
2^{3} \cdot 2^{5}=2^{(3+5)}
$$

This should be quite intuitive, as this is the nature of exponentiation (the inverse of logarithms) multiplying three 2 s , then multiplying that by five 2 s is the same as multiplying together $3+5=$ eight 2 s , hence the product rule.

2.1 Proof

Let a be b^{x} and c be b^{y} for some x and y. Converting to logarithm form, this also means

$$
\begin{gathered}
\log _{b}(a)=x \\
\text { and } \\
\log _{b}(c)=y
\end{gathered}
$$

Substituting these values into our formula gives us

$$
\begin{gathered}
\log _{b}(a \cdot c)=\log _{b}\left(b^{x} \cdot b^{y}\right) \\
\log _{b}\left(b^{x} \cdot b^{y}\right)=\log _{b}\left(b^{(x+y)}\right) \\
\log _{b}\left(b^{(x+y)}\right)=x+y \\
x+y=\log _{b}(a)+\log _{b}(c) \\
\log _{b}(a \cdot c)=\log _{b}(a)+\log _{b}(c) \\
\text { Q.E.D. }
\end{gathered}
$$

2.2 Questions

1. Rewrite $\log (5)+\log (2)$ in the form of $\log (c)$
2. Evaluate $\log _{6}(9)+\log _{6}(4)$

3 Quotient Rule

Likewise, the quotient rule converts from a difference of two logarithms into one:
Idea: Quotient/Difference rule:

$$
\log _{b}(a)-\log _{b}(c)=\log _{b}\left(\frac{a}{c}\right)
$$

Let's use another example, this time

$$
\log _{3} 729-\log _{3} 9
$$

We know that $3^{6}=729$, and $3^{2}=9$

$$
\log _{3} 729-\log _{3} 9=6-2=4
$$

But by the quotient rule,

$$
\begin{gathered}
\log _{3} 729-\log _{3} 9=\log _{3}\left(\frac{729}{9}\right) \\
\log _{3} 729-\log _{3} 9=\log _{3}(81) \\
\log _{3} 729-\log _{3} 9=4
\end{gathered}
$$

This should also seem intuitive, as this is just a different version of the sum rule: addition is the inverse of subtraction, just as multiplication is the inverse of division. Ultimately, this example boils down to

$$
\frac{3^{6}}{3^{2}}=3^{(6-2)}
$$

3.1 Proof

If we keep our same values of $a=b^{x}$ and $x=b^{y}$, we can prove this in a similar way:

$$
\begin{gathered}
\log _{b}\left(\frac{a}{c}\right)=\log _{b}\left(\frac{b^{x}}{b^{y}}\right) \\
\log _{b}\left(\frac{b^{x}}{b^{y}}\right)=\log _{b}\left(b^{(x-y)}\right) \\
\log _{b}\left(b^{(x-y)}\right)=x-y \\
x-y=\log _{b}(a)-\log _{b}(c) \\
\log _{b}(a)-\log _{b}(c)=\log _{b}\left(\frac{a}{c}\right)
\end{gathered}
$$

Q.E.D.

3.2 Questions

1. Rewrite $\log (12)-\log (3)$ in the form of $\log (c)$
2. Evaluate $\ln \left(9 e^{3}\right)-\ln (9 e)$

4 Power Rule

Idea: Power rule:

$$
\log _{b}\left(a^{n}\right)=n \cdot \log _{b}(a)
$$

Let's use the example of

$$
3 \cdot \log _{2}(8)
$$

Evaluating the logarithm separately, we know that $\log _{2}(8)=3$, and $3 \cdot 3=9$. When we use our formula, it gives us

$$
\begin{aligned}
& \log _{2}\left(8^{3}\right) \\
= & \log _{2}(512)
\end{aligned}
$$

We know that $\log _{2}(512)=9$, confirming our formula.

4.1 Proof

This time, we are only provided with one variable. Let $a=b^{x}$:

$$
\begin{gathered}
\log _{b}\left(a^{n}\right)=\log _{b}\left(\left(b^{x}\right)^{n}\right) \\
\log _{b}\left(\left(b^{x}\right)^{n}\right)=\log _{b}\left(b^{x \cdot n}\right) \\
\log _{b}\left(b^{x n}\right)=x \cdot n \\
n \cdot x=n \cdot \log _{b}(a) \\
\log _{b}\left(a^{n}\right)=n \cdot \log _{b}(a)
\end{gathered}
$$

Q.E.D.

4.2 Questions

1. Rewrite $4 \cdot \log (2)$ in the form of $\log (c)$
2. Evaluate $3 \cdot \log _{2}(4)$

5 Change of Base Rule

This final rule is arguably the most important of the 4, and it is especially useful when trying to evaluate certain logarithms with a calculator:

Idea: Change of Base rule:

$$
\log _{b}(a)=\frac{\log _{c}(a)}{\log _{c}(b)}
$$

Among other applications, the change of base rule is most useful to evaluate logarithms which are not rational powers. Most calculators don't have a $\log _{b}(x)$ button, rather they only have a \log and $\ln (x)$ button, with the bases of 10 and e respectively. In order to evaluate equations in other bases, we must change the base.
Let's say we wanted to evaluate $\log _{2}(50)$, but our calculator only had a $\log (x)$ button. 50 is not a rational power of 2 , so we have to change the base to 10 :

$$
\log _{2}(50)=\frac{\log (50)}{\log (2)}
$$

Using our calculator, we get that

$$
\log _{2}(50) \approx 5.644
$$

5.1 Proof

This seems great and all, but why does it work? To prove this, let's keep using the example of

$$
\log _{2}(50)=\frac{\log (50)}{\log (2)}
$$

but let $\log _{2}(50)$ be n . Converting to exponential form, we get that

$$
2^{n}=50
$$

Take the logarithm of both sides:

$$
\begin{gathered}
\log \left(2^{n}\right)=\log (50) \\
n \log (2)=\log 50 \\
n=\frac{\log (50)}{\log (2)} \\
\log _{2}(50)=\frac{\log (50)}{\log (2)}
\end{gathered}
$$

Q.E.D.

Note that in the step where we took the logarithm of both sides $\log \left(2^{n}\right)=\log (50)$, we could have used any base, hence why the change of base rule lets you pick any base.

5.2 Applications

Aside from evaluating logarithms, you can also use the change of base rule to simplify equations with different bases. For example, what if I asked you to simplify

$$
\frac{\log (t)}{\log _{8}(t)}
$$

To start, we can change the base of the denominator to 10 :

$$
\frac{\log (t)}{\frac{\log (t)}{\log (8)}}
$$

This is the same thing as

$$
\log (t) \cdot \frac{\log (8)}{\log (t)}
$$

The two $\log (t)$ s cancel out, leaving us with

$$
\log (8)
$$

5.3 Questions

1. Evaluate $\log _{4}\left(\frac{1}{19}\right)$, round to the nearest thousandth
2. Evaluate $\log _{5}\left(\frac{1}{1000}\right)$, round to the nearest thousandth
3. Evaluate $\log _{3}(b) \cdot \log _{b}(27)$
4. Evaluate $\frac{\log _{b}(8)}{\log _{b}(2)}$

6 Homework

1. Rewrite $\log (3)+\log (4)$ in the form of $\log (c)$
2. Evaluate $\log (20)+\log (50)$
3. Rewrite $\log (30)-\log (5)$ in the form of $\log (c)$
4. Evaluate $\log _{3}(324)-\log _{3}(4)$
5. Rewrite $3 \cdot \log (2)$ in the form of $\log (c)$
6. Evaluate $6 \cdot \log _{16}(4)$
7. Evaluate $3 \cdot \log _{9}\left(\frac{1}{12}\right)$, round to the nearest thousandth
8. Evaluate $2 \cdot \log _{3}\left(\frac{1}{52}\right)$, round to the nearest thousandth
9. Simplify $\log (a) \cdot \log _{a}(5)$

7 Answer Key

Product Rule:

1. $\log (10)$
2. 2

Quotient Rule:

1. $\log (4)$
2. 2

Power Rule:

1. $\log (16)$
2. 6

Change of Base Rule:

1. -2.124
2. -4.292
3. 3
4. 3

Homework

1. $\log (12)$
2. 3
3. $\log (6)$
4. 4
5. $\log (8)$
6. 3
7. -3.393
8. -7.193
9. $\log (5)$
