# Logarithm Properties Logarithms Algebra II

Julian Zhang

July 2021

## 1 Introduction

By now, we know how to evaluate singular logarithms, but we don't know how to solve equations containing multiple of them. We are going to introduce the 4 most important rules of logarithms, upon which all other rules can be derives. Here is a summary of them - we will go through each one, including examples and brief proofs.

> Logarithm Properties:  $\log_{b}(a) + \log_{b}(c) = \log_{b}(a \cdot c)$   $\log_{b}(a) - \log_{b}(c) = \log_{b}(\frac{a}{c})$   $\log_{b}(a^{n}) = n \cdot \log_{b}(a)$   $\log_{b}(a) = \frac{\log_{c}(a)}{\log_{c}(b)}$

# 2 Product Rule

This is the product/sum rule of logarithms, allowing you to convert a sum of two logarithms into one:

| Idea: Product/Sum rule:                     |  |
|---------------------------------------------|--|
| $\log_b(a) + \log_b(c) = \log_b(a \cdot c)$ |  |

To better conceptualize this, let's use an example:

 $\log_2 8 + \log_2 32$ 

We know that  $2^3 = 8$ , so  $\log_2 8 = 3$ . We also know that  $2^5 = 32$ , so  $\log_2 32 = 5$ . Adding these together, we get

$$\log_2 8 + \log_2 32 = 3 + 5 = 8$$

which is one way to solve this equation. However if we use your sum rule, this gives us

$$\log_2 8 + \log_2 32 = \log_2(8 \cdot 32)$$

 $\log_2 8 + \log_2 32 = \log_2(256)$ 

We know that  $2^8 = 256$ , so we get the same answer of 8, so our property holds true. We're going to prove this in depth later, but our example essentially boils down to

$$2^3 \cdot 2^5 = 2^{(3+5)}$$

This should be quite intuitive, as this is the nature of exponentiation (the inverse of logarithms) - multiplying three 2s, then multiplying that by five 2s is the same as multiplying together 3+5 = eight 2s, hence the product rule.

### 2.1 Proof

Let a be  $b^x$  and c be  $b^y$  for some x and y. Converting to logarithm form, this also means

$$\log_b(a) = x$$
  
and  
$$\log_b(c) = y$$

Substituting these values into our formula gives us

$$\log_{b}(a \cdot c) = \log_{b}(b^{x} \cdot b^{y})$$
$$\log_{b}(b^{x} \cdot b^{y}) = \log_{b}(b^{(x+y)})$$
$$\log_{b}(b^{(x+y)}) = x + y$$
$$x + y = \log_{b}(a) + \log_{b}(c)$$
$$\log_{b}(a \cdot c) = \log_{b}(a) + \log_{b}(c)$$
$$Q.E.D.$$

### 2.2 Questions

- 1. Rewrite  $\log(5) + \log(2)$  in the form of  $\log(c)$
- 2. Evaluate  $\log_6(9) + \log_6(4)$

## 3 Quotient Rule

Likewise, the quotient rule converts from a difference of two logarithms into one:

**Idea:** Quotient/Difference rule:  $\log_b(a) - \log_b(c) = \log_b(\frac{a}{c})$ 

Let's use another example, this time

$$\log_3 729 - \log_3 9$$

We know that  $3^6 = 729$ , and  $3^2 = 9$ 

$$\log_3 729 - \log_3 9 = 6 - 2 = 4$$

But by the quotient rule,

$$\log_3 729 - \log_3 9 = \log_3(\frac{729}{9})$$
$$\log_3 729 - \log_3 9 = \log_3(81)$$
$$\log_3 729 - \log_3 9 = 4$$

This should also seem intuitive, as this is just a different version of the sum rule: addition is the inverse of subtraction, just as multiplication is the inverse of division. Ultimately, this example boils down to

$$\frac{3^6}{3^2} = 3^{(6-2)}$$

## 3.1 Proof

If we keep our same values of  $a = b^x$  and  $x = b^y$ , we can prove this in a similar way:

$$\log_{b}\left(\frac{a}{c}\right) = \log_{b}\left(\frac{b^{x}}{b^{y}}\right)$$
$$\log_{b}\left(\frac{b^{x}}{b^{y}}\right) = \log_{b}\left(b^{(x-y)}\right)$$
$$\log_{b}\left(b^{(x-y)}\right) = x - y$$
$$x - y = \log_{b}(a) - \log_{b}(c)$$
$$\log_{b}(a) - \log_{b}(c) = \log_{b}\left(\frac{a}{c}\right)$$
Q.E.D.

## 3.2 Questions

- 1. Rewrite  $\log(12) \log(3)$  in the form of  $\log(c)$
- 2. Evaluate  $\ln(9e^3) \ln(9e)$

# 4 Power Rule

| Idea: Power rule:                 |
|-----------------------------------|
| $\log_b(a^n) = n \cdot \log_b(a)$ |

Let's use the example of

 $3 \cdot \log_2(8)$ 

Evaluating the logarithm separately, we know that  $\log_2(8) = 3$ , and  $3 \cdot 3 = 9$ . When we use our formula, it gives us

 $\log_2(8^3) = \log_2(512)$ 

We know that  $\log_2(512) = 9$ , confirming our formula.

## 4.1 Proof

This time, we are only provided with one variable. Let  $a = b^x$ :

$$\log_{b}(a^{n}) = \log_{b}((b^{x})^{n})$$
$$\log_{b}((b^{x})^{n}) = \log_{b}(b^{x \cdot n})$$
$$\log_{b}(b^{x \cdot n}) = x \cdot n$$
$$n \cdot x = n \cdot \log_{b}(a)$$
$$\log_{b}(a^{n}) = n \cdot \log_{b}(a)$$
Q.E.D.

#### 4.2 Questions

- 1. Rewrite  $4 \cdot \log(2)$  in the form of  $\log(c)$
- 2. Evaluate  $3 \cdot \log_2(4)$

# 5 Change of Base Rule

This final rule is arguably the most important of the 4, and it is especially useful when trying to evaluate certain logarithms with a calculator:



Among other applications, the change of base rule is most useful to evaluate logarithms which are not rational powers. Most calculators don't have a  $\log_b(x)$  button, rather they only have a log and  $\ln(x)$  button, with the bases of 10 and e respectively. In order to evaluate equations in other bases, we must change the base.

Let's say we wanted to evaluate  $\log_2(50)$ , but our calculator only had a  $\log(x)$  button. 50 is not a rational power of 2, so we have to change the base to 10:

$$\log_2(50) = \frac{\log(50)}{\log(2)}$$

Using our calculator, we get that

$$\log_2(50) \approx 5.644$$

#### 5.1 Proof

This seems great and all, but why does it work? To prove this, let's keep using the example of

$$\log_2(50) = \frac{\log(50)}{\log(2)}$$

but let  $\log_2(50)$  be n. Converting to exponential form, we get that

$$2^n = 50$$

Take the logarithm of both sides:

$$\log(2^n) = \log (50)$$
$$n \log(2) = \log 50$$
$$n = \frac{\log(50)}{\log(2)}$$
$$\log_2(50) = \frac{\log(50)}{\log(2)}$$
Q.E.D.

Note that in the step where we took the logarithm of both sides  $log(2^n) = log(50)$ , we could have used any base, hence why the change of base rule lets you pick any base.

## 5.2 Applications

Aside from evaluating logarithms, you can also use the change of base rule to simplify equations with different bases. For example, what if I asked you to simplify

$$\frac{\log(t)}{\log_8(t)}$$

To start, we can change the base of the denominator to 10:

$$\frac{\log(t)}{\frac{\log(t)}{\log(8)}}$$

This is the same thing as

$$\log(t) \cdot \frac{\log(8)}{\log(t)}$$

The two  $\log(t)$ s cancel out, leaving us with

 $\log(8)$ 

## 5.3 Questions

- 1. Evaluate  $\log_4(\frac{1}{19})$ , round to the nearest thousandth
- 2. Evaluate  $\log_5(\frac{1}{1000})$ , round to the nearest thousandth
- 3. Evaluate  $\log_3(b) \cdot \log_b(27)$
- 4. Evaluate  $\frac{\log_b(8)}{\log_b(2)}$

# 6 Homework

- 1. Rewrite  $\log(3) + \log(4)$  in the form of  $\log(c)$
- 2. Evaluate  $\log(20) + \log(50)$
- 3. Rewrite  $\log(30) \log(5)$  in the form of  $\log(c)$
- 4. Evaluate  $\log_3(324) \log_3(4)$
- 5. Rewrite  $3 \cdot \log(2)$  in the form of  $\log(c)$
- 6. Evaluate  $6 \cdot \log_{16}(4)$
- 7. Evaluate  $3 \cdot \log_9(\frac{1}{12})$ , round to the nearest thousandth
- 8. Evaluate  $2 \cdot \log_3(\frac{1}{52})$ , round to the nearest thousandth
- 9. Simplify  $\log(a) \cdot \log_a(5)$

# 7 Answer Key

## **Product Rule:**

- 1.  $\log(10)$
- 2. 2

## Quotient Rule:

- 1.  $\log(4)$
- 2. 2

## Power Rule:

- 1.  $\log(16)$
- 2. 6

## Change of Base Rule:

- 1. -2.124
- 2. -4.292
- 3. 3
- 4. 3

## Homework

- 1.  $\log(12)$
- 2. 3
- 3.  $\log(6)$
- 4. 4
- 5.  $\log(8)$
- 6. 3
- 7. -3.393
- 8. -7.193
- 9.  $\log(5)$