Intro to Logarithms
 Logarithms
 Algebra II

Julian Zhang

July 2021

1 Introduction

In mathematics, exponentiation is a shorthand for repeated multiplication. For example, when we write 2^{4}, this means

$$
\begin{gathered}
2^{4}=2 \times 2 \times 2 \times 2 \\
=16
\end{gathered}
$$

However, what if we wanted to perform this operation in reverse? Let's say that we needed to find a number such that 2 raised to that power equals 16. In other words, to find a number x such that

$$
2^{x}=16
$$

Just from memory, we would know that x in this case equals 4 . However, in the case that we didn't it them by memory, we invented the logarithm (or \log for short) function to help us find these unknown values. To rewrite this equation, we would say

$$
x=\log _{2} 16
$$

This is the basis of logarithm notation that mathematicians use.

Idea: We can rewrite the statement $x=b^{a}$

$$
\begin{gathered}
\text { as } \\
\log _{b}(x)=a
\end{gathered}
$$

Terminology:

The exponential equation $x=b^{a}$ is pronounced " x equals b to the power of a".
Conversely, the logarithmic equation $\log _{b}(x)=a$, is pronounced
" \log base b of x equals a ". In both equations, we say that:
b is the base,
a is the exponent, and
x is the argument.

To give another example, what if I asked you to evaluate

$$
\log _{3} 81
$$

This function essentially asks you to find a number such that 3 raised to that power equals 81 . As such, we know that 3^{4}, or $3 \times 3 \times 3 \times 3=81$. Thus,

$$
\log _{3} 81=4
$$

One last example, this time with

$$
\log _{100} 1
$$

To convert this into exponential form, this is the same as asking you to find a number x such that

$$
100^{x}=1
$$

We know that in order for a power of a number (aside from 1) to equal 1 , it must be raised to the power of 0 . Thus, the solution is

$$
\log _{100} 1=0
$$

Now that we understand how to convert between exponential and simple logarithmic form, note that logarithms also have a few restrictions. The equation

$$
\log _{b} a=x
$$

is only defined when three things are true:

1. b is positive
2. a is positive
3. b does not equal 1

Here is the reasoning:

1. $b>0$: In an exponential function, the base b is always defined to be positive.
2. $a>0: \log _{b} a=x$ means that $b^{x}=a$. Since a positive number raised to any power is always positive, a is always defined to be positive.
3. $b \neq 1$: Since 1 to the power of anything is 1 , the logarithm can never be true, thus b can never equal 1 .

1.1 Questions

1. Write $2^{5}=32$ in logarithmic form
2. Write $\log _{2} 64=6$ in exponential form
3. Evaluate $\log _{6} 36$
4. Evaluate $\log _{7} 343$
5. Evaluate $\log _{4} 4$
6. Evaluate $\log _{5} 1$

2 Special Logarithms

While we have introduced logarithms with a changeable base, there are two main bases that are found on most scientific calculators, and are used more than others.
Firstly, the common logarithm, most commonly written as just $\log (x)$. In mathematics, we usually omit the base, and it is commonly understood to be base 10 . The only exception to this rule is in computer science, where $\log (x)$ usually refers to $\log _{2}(x)$. In short,

$$
\log (x)=\log _{10} x
$$

Secondly, the natural logarithm, which is a logarithm whose base is the number $e . e$, or Euler's number is a mathematical constant approximately equal to 2.718 . We will learn much more about this constant in the future, but for now, just treat e as you would any other number. Instead of writing a logarithm with base e, we shorten it to ln.

$$
\ln (x)=\log _{e} x
$$

2.1 Questions

1. Evaluate $\log (100)$
2. Evaluate $\ln \left(e^{3}\right)$

3 Evaluating Logarithms (advanced)

By now, we are familiar with the fact that the function $\log _{2} 8$ asks us for a number such that 2 raised to that power equals 8 . We know that $2^{3}=8$, so the answer would be 3 .
But what if I asked you to evaluate

$$
\log _{8} 2
$$

Converting to exponential form, this is the same as asking you to find a number x such that $8^{x}=2$. Since we know that $8=2^{3}$, our x value would not equal 3 , but $\frac{1}{3}$. This is the same as writing $\sqrt[3]{8}=2$ Thus,

$$
\log _{8} 2=\frac{1}{3}
$$

Now, what if I asked you to evaluate

$$
\log _{2} \frac{1}{8}
$$

In this case, we know that 2^{3} is 8 , but since $\frac{1}{8}$ is the reciprocal of 8 , we would have to take the negative:

$$
\log _{2} \frac{1}{8}=-3
$$

Finally, what if I asked you to evaluate

$$
\log _{8} \frac{1}{2}
$$

Since we already know that $8^{\frac{1}{3}}=2$, we need to take the reciprocal. Thus,

$$
\log _{8} \frac{1}{2}=-\frac{1}{3}
$$

3.1 Questions

1. Evaluate $\log _{49} 7$
2. Evaluate $\log _{16} \frac{1}{2}$
3. Evaluate $\log _{\frac{1}{5}} 5$
4. Evaluate $\log _{81} \frac{1}{27}$

4 Homework

1. Write $5^{3}=125$ in logarithmic form
2. Write $\log _{4} 16=2$ in exponential form
3. Evaluate $\log _{4} 256$
4. Evaluate $\log _{3} \frac{1}{9}$
5. Evaluate $\log (10000)$
6. Evaluate $\ln \left(e^{7}\right)$
7. Evaluate $\log _{216} \frac{1}{36}$
8. Evaluate $\log _{16} 8$

5 Answer Key

Logarithms:

1. $\log _{2} 32=5$
2. $2^{6}=64$
3. 2
4. 3
5. 1
6. 0

Special Logarithms:

1. 2
2. 3

Advanced Logarithms

1. $-\frac{1}{2}$
2. $-\frac{1}{4}$
3. -1
4. $-\frac{3}{4}$

Homework:

1. $\log _{5} 125=3$
2. $2^{4}=16$
3. 4
4. -2
5. 5
6. 7
7. $-\frac{2}{3}$
8. $\frac{3}{4}$
