Trigonometry

Julian Zhang

January 2023

1 Introduction

This handout is designed to be a comprehensive list of all trigonometric concepts and formulas needed for preOlympiad high school contest math. This handout is written with the assumption that the reader understands the basic trigonometric functions and their usages, as taught in the Ontario Grade 9-11 curriculum. Credits go to George Wang and AOPS Volume 2 for the questions.

2 Trig Identities

Definition: The three main trigonometric identities and their inverses:

$$
\begin{aligned}
\sin (x) & =\frac{o p p}{h y p} \\
\cos (x) & =\frac{a d j}{h y p} \\
\tan (x) & =\frac{o p p}{a d j}
\end{aligned}
$$

$$
\csc (x)=\frac{1}{\sin (x)}
$$

$$
\sec (x)=\frac{1}{\cos (x)}
$$

$$
\cot (x)=\frac{1}{\tan (x)}
$$

2.1 Even-odd Identities

$$
\begin{gathered}
\sin (-x)=-\sin (x) \\
\cos (-x)=\cos (x) \\
\tan (-x)=-\tan (x)
\end{gathered}
$$

2.2 Period Identities

$$
\begin{array}{r}
\sin (x \pm 2 \pi)=\sin (x) \\
\cos (x \pm 2 \pi)=\cos (x) \\
\tan (x \pm \pi)=\tan (x) \\
\csc (x \pm 2 \pi)=\csc (x) \\
\sec (x \pm 2 \pi)=\sec (x) \\
\cot (x \pm \pi)=\cot (x)
\end{array}
$$

2.3 Conversion Identities

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-x\right)=\sin (x) \\
& \sin \left(\frac{\pi}{2}-x\right)=\cos (x) \\
& \tan \left(\frac{\pi}{2}-x\right)=\tan (x) \\
& \cot \left(\frac{\pi}{2}-x\right)=\tan (x) \\
& \csc \left(\frac{\pi}{2}-x\right)=\sec (x) \\
& \sec \left(\frac{\pi}{2}-x\right)=\csc (x)
\end{aligned}
$$

2.4 Pythagorean Identities

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& \cot ^{2} \theta+1=\csc ^{2} \theta
\end{aligned}
$$

2.5 Sum and Difference Formulas

$$
\begin{gathered}
\sin (x \pm y)=\sin (x) \cos (y) \pm \cos (x) \sin (y) \\
\cos (x \pm y)=\cos (x) \cos (y) \mp \sin (x) \sin (y) \\
\tan (x \pm y)=\frac{\tan (x) \pm \tan (y)}{1 \mp \tan (x) \tan (y)}
\end{gathered}
$$

2.6 Product to Sum formulas

$$
\begin{aligned}
\sin (x) \sin (y) & =\frac{1}{2}[\cos (x-y)-\cos (x+y)] \\
\cos (x) \cos (y) & =\frac{1}{2}[\cos (x-y)+\cos (x+y)] \\
\sin (x) \cos (y) & =\frac{1}{2}[\sin (x+y)+\sin (x-y)]
\end{aligned}
$$

2.7 Sum to Product formulas

$$
\begin{aligned}
\sin x \pm \sin y & =2 \sin \frac{x \pm y}{2} \cos \frac{x \mp y}{2} \\
\cos x+\cos y & =2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\
\cos x-\cos y & =-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}
\end{aligned}
$$

2.8 Double-angle formulas

$$
\begin{gathered}
\sin (2 \theta)=2 \sin (\theta) \cos (\theta) \\
\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=1-2 \sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1 \\
\tan (2 \theta)=\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}
\end{gathered}
$$

2.9 Half-angle formulas

$$
\begin{aligned}
\sin \left(\frac{x}{2}\right) & = \pm \sqrt{\frac{1-\cos (x)}{2}} \\
\cos \left(\frac{x}{2}\right) & = \pm \sqrt{\frac{1+\cos (x)}{2}} \\
\tan \left(\frac{x}{2}\right) & =\frac{1-\cos (x)}{\sin (x)}
\end{aligned}
$$

2.10 Function Laws

For all following formulas, assume we have a triangle $\triangle A B C$ with side a opposite angle A, side b opposite angle B, and side c opposite angle C :

Law of Sines:

$$
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}
$$

Law of Cosines:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos (A)
$$

Law of Tangents (obscure):

$$
\frac{a-b}{a+b}=\frac{\tan \left[\frac{1}{2}(A-B)\right]}{\tan \left[\frac{1}{2}(A+B)\right]}
$$

2.11 Area of Triangles

$$
\begin{gathered}
{[A B C]=\frac{1}{2} a b \sin (C)} \\
{[A B C]=\sqrt{s(s-a)(s-b)(s-c)}}
\end{gathered}
$$

2.12 Misc Formulas

Amplitude Moderation: $a \sin x+b \cos x=\sqrt{a^{2}+b^{2}} \sin (x+\alpha)=\sqrt{a^{2}+b^{2}} \cos (x-\beta)$

3 Graphing

4 Exercises

1. Find side $A C$ of $\triangle A B C$ if $\angle A=90^{\circ}, \sec (B)=4$, and $A B=6$.
2. Find, in degrees, the smallest positive angle x such that $\sin (3 x)=\cos (7 x)$
3. Evaluate $\sin \left(75^{\circ}\right)$ without a calculator.
4. Find the value of $\sin ^{2} 10^{\circ}+\sin ^{2} 20^{\circ}+\ldots+\sin ^{2} 90^{\circ}$
5. Show that $\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)$ using the formula for $\sin (\alpha-\beta)$
6. From the top of a fire tower, a forest ranger sees his partner on the ground at an angle of depression of 40°. If the tower is 45 feet in height, how far is the partner from the base of the tower, to the nearest tenth of a foot?
7. If $\sin (x) \cos (x)=\sqrt{22}$, find x .
8. Evaluate $\cos \left(36^{\circ}\right)-\cos \left(72^{\circ}\right)$ without a calculator.
