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Today’s just gonna be a fun lecture on Complex Numbers. Note that a majority of the material

for today is taken from the corresponding chapter in AoPS’ Volume 2.

1 Basics

First, we’ll talk about the imaginary numbers. We’ve always talked about how at least for reals, x2 ≥ 0.

However, for what number then say would we have x2 = −1? Turns out, we define this as i (and −i works

as well) - where i is our unit imaginary number. After this, multiplying i by any real number gives us our

range of imaginary numbers.

So what then are complex numbers? They’re linear combinations of reals and imaginary numbers.

For example, 3 + 5i is a complex number, and so is
√

2 + πi. We usually describe imaginary numbers by the

combination a+ bi, where a and b are both real numbers.

Adding complex numbers is done just by adding the real parts in conjunction with the imaginary

parts. For example, (3 + 5i) + (2 + 6i) = 5 + 11i. Subtraction is also the same manner, and multiplication is

also what you would expect - just multiply it out, using FOIL and the fact that i2 = −1. For example, we

have:

(3 + 5i)(2 + 6i) = 6 + 10i+ 18i+ 30(i2)

= 6 + 28i− 30

= −24 + 28i

Division is a bit different, so I won’t teach it (if you want to do it yourself, just know that you have

to multiply the denominator by the conjugate to get your answer).

A common way of describing a complex number is through the realization of the complex plane.

The complex plane is essentially a cartesian plane that has the ”imaginary axis”, with unit i, as its y-axis,

and the real numbers occupying the x-axis.
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Your usual complex plane, with a few example points

2 Conjugates

For any complex number z = a + bi, we define its conjugate as the value z = a − bi. Essentially when

interpreted through the complex plane, z is the reflection of z across the real axis.

Why the conjugate is important is this:

The conjugate is preserved through addition, and multiplication. That is - the sum of two conjugates is

the conjugate of their sum, and the product of two conjugates is the conjugate of their product.

Note that subtraction is just negative addition anyways so subtraction also works here.

The proof is essentially just to multiply/add it all out - you can do this, but it’s not much fun.

Why this is important, however, is because addition and multiplication together cover a lot of stuff. In

particular, one thing we’ve studied that is just addition and multiplication applied repeatedly to one variable

is the polynomial, which we’ll investigate now:

Consider a polynomial P (z) that has real coefficients, and consider any complex number z that is
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a root of this polynomial. Note that we have for any a and nonnegative integer n,

zn = zn

azn = azn

Thus, we have that if P (z) = anz
n + an−1z

n−1 + . . . a0z
0 = 0, then

P (z) = anz
n + an−1

n−1 + . . . a0z
0

= anzn + an−1zn−1 + . . . a0z0

= P (z)

= 0

Thus, if z is a root of P (z) then so is z. This is why I said earlier that complex number roots of

a polynomial come in pairs - if we know a complex number is a root of a polynomial, we immediately get a

second root for free!

3 Polar Form

A useful technique regarding Complex Numbers is their easy manipulation in polar form. Polar form is

basically expressing a complex number z = a+ bi not in terms of a and b, but in terms of its absolute value:

which we define to be r = |z| =
√
a2 + b2, and the angle θ = arg z that z makes with the origin of the

complex plane. We can readily see that here,

a = r cos θ

b = r sin θ

Why we do this is that multiplication with complex numbers simplifies really nicely with the polar

form. Consider two complex numbers z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ1). We have that:

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2(cos θ1 cos θ2 + i sin θ1 cos θ2 + i sin θ2 cos θ1 − sin θ1 sin θ2

= r1r2(cos (θ1 + θ2) + i sin (θ1 + θ2))

|z1z2| = r1r2

= |z1||z2|
arg z1z2 = θ1 + θ2

= arg z1 + arg z2

This is a very unique result - what this says is that when we multiply complex numbers in polar form, we

multiply the absolute values and add their arguments - in other words, angles! This is a main reason why

complex numbers are so unique - their multiplication is very easy to interpret and manipulate.

Fun fact: Euler proved that given any z with absolute value r and argument θ, we can actually

express it as z = reiθ, where θ is in radians. In particular, setting θ = π and r = 1 gives us that eiπ = −1,

or in other words eiπ + 1 = 0 - the formula everyone knows from that guy wearing it on his shirt. On contest

or in practice both this form and the polar form we’ve been using are perfectly valid - in fact, I’ll be using

this for the rest of the lecture.
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In fact, the above result can be repeated multiple times to encompass exponentation as well. We

have that for any complex number z = r(cos θ + i sin θ),

|zn| = |z|n

= rn

arg zn = n · arg z

= nθ

This result is known as De Moivre’s Theorem, and can prove quite useful on a variety of

problems.

4 Roots of Unity

Remember that equation x3 = 1? For so long, we’ve been taught that x = 1 was the only solution. But that’s

not actually true - in fact, by the Fundamental Theorem of Algebra we know we’re missing two complex

solutions. So what are they?

Let one of these complex solutions be z = eiθ We have that z3 = ei(3θ) = 1 = e2πi. This gives us

that 3θ is divisible by 2π - giving us that θ = 2
3π and θ = 4

3π are the two solutions that give us the complex

numbers we were looking for. Now, if we plot this in the complex plane, we get the following diagram:
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Notice anything?
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In fact, we can generalize this to all xn = 1 solutions. The solutions to this equation, called the

nth roots of unity, are the complex numbers eiθ for θ = 2k
n π where k is an integer from 1 to n inclusive

and everything is in radians. In particular, these complex numbers when plotted form a regular n-gon - and

perhaps even more surprisingly, this is true for the solutions of this equation for all numbers.

Roots of unity are important just to know, because they appear a lot. Also, their graphic repre-

sentation is pretty nice, so there’s that too :)

5 Examples

Here are a few examples of complex numbers appearing in various contest problems:

1. (AMC 12A 2017) There are 24 different complex numbers z such that z24 = 1. For how many of these

is z6 a real number?

(A) 0 (B) 4 (C) 6 (D) 12 (E) 24

Let’s consider any such z = eiθ, and we’ll look into the value of θ. Note that the condition above gives

us that z is a 24th root of unity, and that we want to find all z such that it’s also a 6th root of unity.

Translated into numerical terms, we have;

θ =
k

12

for some integer k betwee 0 and 24, and we want to find all such k such that we also express θ as:

θ =
a

3

for some integer a. Clearly this is for all k divisible by 4, so our answer is 24
4 = 6, or C .

This one features a cool technique.

2. (Autumn Mock AMC 10 2018) How many of the solutions to x1 + x2 + . . . x59 = 0 are not solutions to

x2 + x4 + x6 + x8 = 0.

First of all, multiplying the first equation by x− 1 and factoring out the x gives us that:

x(1 + x+ . . . x58) = 0

x
x59 − 1

x− 1
= 0

From this we see that the solutions to the first equation are x = 0 and the 59 roots of unity aside from

1. Now, taking out the x2 and doing a little bit of algebra on the second equation gives us:

x2(1 + x2 + x4 + x6) = 0

x2
x8 − 1

x2 − 1
= 0

x2
x8 − 1

(x− 1)(x+ 1)
= 0

From this we see that the solutions to the second equation are 0 and the 8th roots of unity excluding

1 and −1. Since the 8th roots of unity and the 59th roots of unity clearly do not overlap, our only

overlapping solution is 0, and thus we have that 58 is our answer.

In general, if you see such a geometric progression, do not hesitate to take it out like we did here.

Oftentimes, this will be a key to solving the problem!

Finally, here’s a harder one.
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3. (AIME I 2018) Let N be the number of complex numbers z with the properties that |z| = 1 and

z6! − z5! is a real number. Find the remainder when N is divided by 1000.

First of all, it’s probably going to be easier for us to use a = z120 (as then we also have z720 = a6.

Since for every z there is only one value of z120, we know that there are exactly 120 unique solutions

for z for every nonzero unique value of a, so after we solve for a our answer will just be what we got

multiplied by 720.

Now, having a6 − a be a real number is basically saying that the ”imaginary parts” of a6 and a are

equal. This says that we either have a6 = a, or a6 and a are reflections across the imaginary axis. Note

that the first condition translates to (a5 − 1)a = 0, and so since |a| = 1 we have that all 5 of the 5th

roots of unity.

Now, we consider the second. Let a = eiθ for some angle θ. We have that if a and a6 are reflections

across the imaginary axis, then their angles add up to an odd multiple of pi, and so we have (for some

integer k):

6θ + θ = (2k − 1)π

7θ = (2k − 1)π

θ =
2k − 1

7
π

This gives 7 unique solutions for θ between 0 and 2π, and clearly these solutions do not intersect with

the 5 roots of unity. Thus, we have that there are 12 possibilities for a, and 12 · 120 = 1 440 solutions

for z.

6 Problems

1. Let w = 1 + 5i and z = 6
√

2− 4i. Compute the following:

(a) w + z

(b) w − 2i

(c) w3

(d) w2 − z2

(e) wz − wz2

2. Find the number of ordered pairs of real numbers (a, b) such that (a+ bi)2002 = a− bi.
(A) 1001 (B) 1002 (C) 2001 (D) 2002 (E) 2004

3. The polynomial f(x) = x4 + ax3 + bx2 + cx+ d has real coefficients, and f(2i) = f(2 + i) = 0. What

is a+ b+ c+ d?

(A) 0 (B) 1 (C) 4 (D) 9 (E) 16

4. There is a complex number z with imaginary part 164 and a positive integer n such that

z

z + n
= 4i.

Find n.

5. Let

z =
1 + i√

2
.
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What is (
z1

2

+ z2
2

+ z3
2

+ · · ·+ z12
2
)
·
(

1

z12
+

1

z22
+

1

z32
+ · · ·+ 1

z122

)
?

(A) 18 (B) 72− 36
√

2 (C) 36 (D) 72 (E) 72 + 36
√

2

6. Compute (i+ 1)3(i− 2)3 + 3(i+ 1)2(i+ 3)(i− 2)2 + 3(i+ 1)(i+ 3)2(i− 2) + (i1)3.

7. For certain real values of a, b, c, and d, the equation x4 + ax3 + bx2 + cx + d = 0 has four non-real

roots. The product of two of these roots is 13 + i and the sum of the other two roots is 3 + 4i, where

i =
√
−1. Find b.

8. The points (0, 0) , (a, 11) , and (b, 37) are the vertices of an equilateral triangle. Find the value of ab .
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7 Answers

1. just do it

2. e

3. d

4. 697

5. c

6. −24i− 20

7. 51

8. 315
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