Algebra

Julian Zhang

November 2021

1 Introduction

This handout is designed to be an introduction to AMC 10/12 level algebra. Most pre-Olympiad level polynomial algebra can be solved using a few key formulas, with the rest being intuition and manipulations. Also, thanks Eric Shen :)

2 Manipulations

Theorem: Common Algebraic Manipulations:

1. $(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$ (square of sum/difference)
2. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+a c+b c)$ (square of 3 sums)
3. $a^{2}-b^{2}=(a+b)(a-b)$ (difference of squares)
4. $(a \pm b)^{3}=a^{3} \pm 3 a^{2} b+3 b^{2} a \pm b^{3}$ (cube of sum/difference)
5. $a^{3} \pm b^{3}=(a \pm b)\left(a^{2} \pm a b+b^{2}\right)$ (sum/difference of cubes)
6. $a^{3}+b^{3}+c^{3}=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-a c-b c\right)$ (cube of 3 sums)
7. $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\ldots+a b^{n-2}+b n-1\right)$ (generalized difference)
8. $a^{n}+b^{n}=(a+b)\left(a^{n-1}+a^{n-2} b+\ldots+a b^{n-2}+b n-1\right)$ (generalized sum for odd n)

3 Roots

Definition: Broadly speaking, a polynomial is the combination of more than one integer powers. The general form of a polynomial is:

$$
P(x)=a_{n} x^{n}+a_{n-1}+\ldots a_{0}
$$

Given a polynomial $P(x)$, any k such that $P(k)=0$ is considered a root of P.

Consider the difference $P(x)-P(k)=a_{n}\left(x^{n}-k^{n}\right)+\ldots a_{0}-a_{0}$. Since $P(k)=0$, the difference still equals $P(x)$. In addition, note that since $a-b$ is always a factor of $a^{n}-b^{n}$, we have that $x-k$ is a factor of $a_{i}\left(x^{i}-k^{i}\right)$ for all $0 \leq i \leq n$. This means that since $P(x)$ is the sum of all such terms, $x-k$ is a factor of $P(x)-P(k)=P(x)$ as well.

Theorem: Factor Theorem:

Given a polynomial $P(x)=a_{n} x^{n}+a_{n-1}+\ldots a_{0},(x-k)$ is a factor of $P(x)$ if and only if $P(k)=0$, or if k is a root of P

This can be generalized for any k, regardless of whether it is a root or not. Note that since $x-k$ is a factor of $P(x)-P(k)$ regardless of k, we have that dividing $P(x)$ by $x-k$ yields a remainder of $P(k)$.

Theorem: Remainder Theorem:

Given a polynomial $P(x)=a_{n} x^{n}+a_{n-1}+\ldots a_{0}$, the remainder of $P(x)$ divided by any $x-k$ is $P(k)$

The last theorem worthy of mentioning is the Fundamental Theorem of Algebra:

Theorem: Fundamental Theorem of Algebra:

Given a polynomial $P(x)$ of the nth degree, $P(x)$ has exactly n complex roots, each of which can be expressed as $a+b i$.

This theorem appears much less on contests, however its largest application is being able to write polynomials in factored form:

Definition: Given the n roots $x_{1}, x_{2}, \ldots x_{n}$ of a polynomial $P(x)$, we have that

$$
P(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)
$$

4 Rational Root Theorem

This is essentially an extension of the Polynomial Remainder Theorem. Given a polynomial $P(x)$ in standard form with k as a root, we have that

$$
\begin{gathered}
a_{n} k^{n}+\ldots a_{1} k+a_{0}=0 \\
k\left(a_{n} k^{n-1}+\ldots a_{1}\right)=-a_{0}
\end{gathered}
$$

This implies that k divides a_{0}, but it can be generalized to all rational numbers. Let $k=\frac{p}{q}$, where p and q are coprime. We now have that:

$$
\begin{gathered}
a_{n}\left(\frac{p}{q}\right)^{n}+\cdots a_{1} \frac{p}{q}+a_{0}=0 \\
a_{n} p^{n}+a_{n-1} p^{n-1} q+\ldots+a_{0} q^{n}=0
\end{gathered}
$$

We now have that q divides $a_{0} q^{n}$ and that p divides a_{0}, giving us:

Theorem: Rational Root Theorem:

Given a polynomial $P(x)$, all rational solutions of $P(x)$ can be written as $\frac{p}{q}$, where p and q are coprime integers, p divides the last term a_{0}, and q divides the first term $a_{n} x^{n}$.

This theorem helps us factor polynomials of degree ≥ 2, without using substitution.

4.1 Examples

Example 1 (Basic RRT)

Find all roots of the polynomial $2 x^{3}+5 x^{2}+x-2$

Example 2 (Remainder Theorem)

A quartic polynomial $a x^{4}+b x^{3}+c x+d$ has roots $1+\sqrt{3}, 1-\sqrt{3}, 2+\sqrt{2}$, and $2-\sqrt{2}$. Calculate $a+b+c+d$.

5 Vieta's Formulas

Given a quadratic equation $a x^{2}+b x+c=0$, you probably already know that the two values of x are $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. However, we want to know how these two roots (p, q) relate, namely what their sum and product are. Let's start with the sum:

$$
\begin{gathered}
p+q=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
p+q=\frac{-2 b}{2 a} \\
p+q=-\frac{b}{a}
\end{gathered}
$$

Then, the product:

$$
p q=\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right)\left(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right)
$$

The numerator can be expressed as a difference of squares:

$$
\begin{gathered}
p q=\frac{b^{2}-b^{2}+4 a c}{(2 a)^{2}} \\
p q=\frac{4 a c}{4 a^{2}} \\
p q=\frac{c}{a}
\end{gathered}
$$

Now, let's try the same with a cubic, however given that the cubic formula is much more complex, we'll use its factored form:

$$
\begin{gathered}
a(x-p)(x-q)(x-r)=a x^{3}+b x^{2}+c x+d \\
a x^{3}-a(p+q+r) x^{2}+a(p q+q r+r p) x-a p q r=a x^{3}+b x^{2}+c x+d
\end{gathered}
$$

Comparing coefficients gives us

$$
\begin{gathered}
p+q+r=-\frac{b}{a} \\
p q+q r+p=\frac{c}{a} \\
p q r=-\frac{d}{a}
\end{gathered}
$$

These formulas generalize nicely, and are known as Vieta's Formulas. Make sure you understand how these work, as they are the foundation of many AMC algebra problems.

Theorem: Vieta's Theorems:

Given a polynomial $P(x)=a_{n} x^{n}+a_{n-1}+\ldots a_{0}$ with n (not necessarily distinct) complex roots, we have that

$$
\begin{gathered}
r_{1}+r_{2}+\cdots+r_{n}=-\frac{a_{n-1}}{a_{n}} \\
r_{1} r_{2}+r_{1} r_{3}+\cdots+r_{n-1} r_{n}=\frac{a_{n-2}}{a_{n}} \\
\vdots \\
r_{1} r_{2} r_{3} \cdots r_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}
\end{gathered}
$$

Compactly, this equates to

$$
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left(\prod_{j=1}^{k} r_{i_{j}}\right)=(-1)^{k} \frac{a_{n-k}}{a_{n}}
$$

5.1 Examples

Example 3 (Basic Vietas)

Let $g(x)=x^{3}-4 x^{2}+5 x-8$, and let its roots be p, q, and r. Compute $p^{2} q r+p q^{2} r+p q r^{2}$.

Example 4 (David Altizio)

The polynomial $x^{3}-A x+15$ has three real roots. Two of these roots sum to 5 . What is $|A|$?

Example 5 (USAMO 1984)

The product of two of the four roots of the quartic equation $x^{4}-18 x^{3}+k x^{2}+200 x-1984$ is -32 . Determine the value of k.

6 Problems

1. Completely factor the polynomial $x^{4}-x^{3}-5 x^{2}+3 x+6$
2. Compute the sum of all the roots of $(2 x+3)(x-4)+(2 x+3)(x-6)=0$
(A) $\frac{7}{2}$
(B) 4
(C) 5
(D) 7
(E) 13
3. Find the remainder when x^{13} is divided by $x-1$.
4. Suppose that a and b are nonzero real numbers, and that the equation $x^{2}+a x+b=0$ has solutions a and b. Then the pair (a, b) is
(A) $(-2,1)$
(B) $(-1,2)$
(C) $(1,-2)$
(D) $(2,-1)$
(E) $(4,4)$
5. What is the sum of the reciprocals of the roots of the equation $\frac{2003}{2004} x+$ $1+\frac{1}{x}=0$?
(A) $-\frac{2004}{2003}$
(B) -1
(C) $\frac{2003}{2004}$
(D) 1
(E) $\frac{2004}{2003}$
6. Let $f(x)=a x^{7}+b x^{3}+c x-5$, where a, b and c are constants. If $f(-7)=7$, then $f(7)$ equals
(A) -17
(B) -7
(C) 14
(D) 21
(E)not uniquely determined
7. Let a and b be the roots of the equation $x^{2}-m x+2=0$. Suppose that $a+\frac{1}{b}$ and $b+\frac{1}{a}$ are the roots of the equation $x^{2}-p x+q=0$. What is q ?
(A) $\frac{5}{2}$
(B) $\frac{7}{2}$
(C) 4
(D) $\frac{9}{2}$
(E) 8
8. If r_{1}, r_{2}, r_{3} are the three distinct solutions to the equation $2 x^{3}+x+9=0$, what is the value of $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$?
9. Let Q be a polynomial

$$
Q(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where a_{0}, \ldots, a_{n} are nonnegative integers. Given that $Q(1)=4$ and $Q(5)=152$, find $Q(6)$.
10. The polynomial $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ has real coefficients, and $f(2 i)=f(2+i)=0$. What is $a+b+c+d$?
(A) 0
(B) 1
(C) 4
(D) 9
(E) 16
11. Consider all lines that meet the graph of $y=2 x^{4}+7 x^{3}+3 x-5$ in four distinct points: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$. Show that

$$
\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}
$$

is independent of the line and find its value.
12. The function $f(x)=x^{4}+a x^{3}+b x^{2}+2000 x+d$ has four distinct roots. Two of the rots sum to 5 ; the other two roots also sum to 5 . Compute b.

