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1 Introduction

this is my attempt to not lose it all

2 Algebra

2.1 Manipulations

Theorem: Common Algebraic Manipulations:

1. (a± b)2 = a2 ± 2ab+ b2 (square of sum/difference)

2. (a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ ac+ bc) (square of 3 sums)

3. a2 − b2 = (a+ b)(a− b) (difference of squares)

4. (a± b)3 = a3 ± 3a2b+ 3b2a± b3 (cube of sum/difference)

5. a3 ± b3 = (a± b)(a2 ± ab+ b2) (sum/difference of cubes)

6. a3 + b3 + c3 = (a+ b+ c)(a2 + b2 + c2 − ab− ac− bc) (cube of 3 sums)

7. an − bn = (a− b)(an−1 + an−2b+ . . .+ abn−2 + bn− 1) (generalized difference)

8. an + bn = (a+ b)(an−1 + an−2b+ . . .+ abn−2 + bn− 1) (generalized sum for odd n)

2.2 Functions

Definition: A real function defined on (a, b) is said to be convex if

f(
x

y
) ≤ f(x) + f(y)

2
, x, y ∈ (a, b)

If the opposite inequality holds, it is called concave
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Theorem: Function Properties:

1. If f(X) and g(x) are convex functions on (a, b), then so are h(x) = f(x) + g(x) and M(x) =
max f(x), g(x)

2. If f(X) and g(x) are convex functions on (a, b) and if g(x) is nondecreasing on (a, b), then it is
convex on (a, b)

3. Given two functions f(x), g(x) such that the domain of definition of f contains the range of g.
the composition of f and g is defined by (f ◦ g)(x) := f(g(x))

4. If f = g we write f2 instead of f ◦ f

2.3 Polynomials

Definition: Broadly speaking, a polynomial is the combination of more than one integer powers. The
general form of a polynomial is:

P (x) = anx
n + an−1x

n−1 + . . . a0

2.3.1 Root-finding Theorems

Theorem: Factor Theorem:

Given a polynomial P (x) = anx
n + an−1 + . . . a0, (x− k) is a factor of P (x) if and only if P (k) = 0,

or if k is a root of P

Theorem: Remainder Theorem:

Given a polynomial P (x) = anx
n + an−1 + . . . a0, the remainder of P (x) divided by any x− k is P (k)

Theorem: Fundamental Theorem of Algebra:

Given a polynomial P (x) of the nth degree, P (x) has exactly n complex roots, each of which can be
expressed as a+ bi. Given the n roots x1, x2, . . . xn of a polynomial P (x), we have that

P (x) = a(x− x1)(x− x2) . . . (x− xn)

2.3.2 Coefficient Theorems

Theorem: Binomial Coefficient Theorem:

(a+ b)2 =

(
n

0

)
an +

(
n

1

)
an−1b+ . . .+

(
n

k

)
an−kbk +

(
n

n− 1

)
abn−1 +

(
n

n

)
bn
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Theorem: Multinomial Coefficient Theorem:

(x1 + x2 + . . . xx)
n =

n∑
i1+i2+...im

(
n!

i1!i2!m!
)xi1

1 xi2
2 . . . xim

m

Theorem: Vieta’s Theorems:

Given a polynomial P (x) = anx
n + an−1 + . . . a0 with n (not necessarily distinct) complex roots, we

have that
r1 + r2 + · · ·+ rn = −an−1

an

r1r2 + r1r3 + · · ·+ rn−1rn =
an−2

an

...

r1r2r3 · · · rn = (−1)n
a0
an

.

Compactly, this equates to

∑
1≤i1<i2<···<ik≤n

 k∏
j=1

rij

 = (−1)k
an−k

an

Vietas on the cubic ax3 + bx2 + cx+ d results in:

r1 + r2 + r3 =
−b

a

r1r2 + r1r3 + r2r3 =
c

a

r1r2r3 =
−d

a

2.3.3 Linear Function Optimization

The linear function ax+ by = c has a maximized product xy of: x2

4ab when x = c
2a , y = c

2b .

y =
c− ax

b

x(
c− ax

b
) =

cx− ax2

b

= −1

b
(ax2 − cx)

= −1

b
(ax2 − cx+

c2

4a2
− c2

4a2
)

= −1

b
(
√
ax− c

2a
)2 +

c2

4a2b

with a vertex at c
2a . Plugging in x gives us a y value of c

2b .
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2.3.4 Partial Fraction Decomposition

Theorem: Partial Fraction Decomposition: Given a rational function

f(x) =
1

L1(x)L2(x) + . . . Ln(x)Q1(x)Q2(x) . . . Qm(x)

Where each Li is a linear factor and each Qj is an irreducible quadratic, there exist real numbers
A1, A2, . . . An, B1, B2, . . . Bm, . . . C1, C2, . . . Cm such that

f(x) =
A1

L1(x)
+

A2

L2(x)
+ . . .

An

Ln(x)
+

B1x+ c1
Q1(x)

+
B2x+ c2
Q2(x)

+ . . .
Bmx+ cm
Qm(x)

2.4 Logs

Theorem: Log Properties: ab = x ⇐⇒ loga x = b. Thus, we have:

1. logb(a) + logb(c) = logb(a · c)

2. logb(a)− logb(c) = logb(
a
c )

3. logb(a
n) = n · logb(a)

4. logab(c) = 1
b · loga(c)

5. aloga(b) = b

6. logb(a) =
logc(a)
logc(b)

7. loga(b) logb(a) = 1

2.5 Trig

Definition: The three main trigonometric identities and their reciprocals:

sin(x) =
opp

hyp

cos(x) =
adj

hyp

tan(x) =
opp

adj

csc(x) =
1

sin(x)

sec(x) =
1

cos(x)

cot(x) =
1

tan(x)
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2.5.1 Even-odd Identities

sin(−x) = − sin(x)

cos(−x) = cos(x)

tan(−x) = − tan(x)

2.5.2 Period Identities

sin(x± 2π) = sin(x)

cos(x± 2π) = cos(x)

tan(x± π) = tan(x)

csc(x± 2π) = csc(x)

sec(x± 2π) = sec(x)

cot(x± π) = cot(x)

2.5.3 Conversion Identities

cos(
π

2
− x) = sin(x)

sin(
π

2
− x) = cos(x)

tan(
π

2
− x) = tan(x)

cot(
π

2
− x) = tan(x)

csc(
π

2
− x) = sec(x)

sec(
π

2
− x) = csc(x)

2.5.4 Pythagorean Identities

sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2θ

cot2 θ + 1 = csc2 θ

2.5.5 Sum and Difference Formulas

sin(x± y) = sin(x) cos(y)± cos(x) sin(y)

cos(x± y) = cos(x) cos(y)∓ sin(x)sin(y)

tan(x± y) =
tan(x)± tan(y)

1∓ tan(x) tan(y)
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2.5.6 Product to Sum formulas

sin(x) sin(y) =
1

2
[cos(x− y)− cos(x+ y)]

cos(x) cos(y) =
1

2
[cos(x− y) + cos(x+ y)]

sin(x) cos(y) =
1

2
[sin(x+ y) + sin(x− y)]

2.5.7 Sum to Product formulas

sinx± sin y = 2 sin
x± y

2
cos

x∓ y

2

cosx+ cos y = 2 cos
x+ y

2
cos

x− y

2

cosx− cos y = −2 sin
x+ y

2
sin

x− y

2

2.5.8 Double-angle formulas

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos2(θ)− sin2(θ) = 1− 2 sin2(θ) = 2 cos2(θ)− 1

tan(2θ) =
2 tan(θ)

1− tan2(θ)

2.5.9 Half-angle formulas

sin(
x

2
) = ±

√
1− cos(x)

2

cos(
x

2
) = ±

√
1 + cos(x)

2

tan(
x

2
) =

1− cos(x)

sin(x)

2.5.10 Function Laws

Law of Sines:
a

sin(A)
=

b

sin(B)
=

c

sin(C)

Law of Cosines:
a2 = b2 + c2 − 2bc cos(A)

Law of Tangents:
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2.5.11 Area of Triangles

1

2
ab sin(C)√

s(s− a)(s− b)(s− c)

2.5.12 Misc Formulas

Amplitude Moderation: a sinx+ b cosx =
√
a2 + b2 sin(x+ α) =

√
a2 + b2 cos(x− β)

2.6 Sequences and Series

2.6.1 Mean Quantities

Definition:

• The arithmetic mean of n numbers a1, a2, . . . , an,

A(a) =
a1 + a2 + . . . an

n

• The geometric mean of n nonnegative real numbers,

G(a) = n

√
1

a1
+

1

a2
+ . . .

1

an

• The square mean of n real numbers,

S(a) =

√
a21 + a22 + . . .+ a2n

n

• The harmonic mean of n real numbers,

H(a) =
1

1
a1

+ 1
a2

+ . . .+ 1
an

We then have the following relationships:

• A(a) ≥ G(a) for non-negative real numbers (AM-GM inequality)

• S(a) ≥ A(a) for real numbers

• G(a) ≥ H(a) for positive real numbers

2.6.2 Sum Quantities

Sum of Arithmetic Sequence: a, a+ d, a+ 2d, . . .

n∑
i=1

ai = an+
n(n− 1)

2
d
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Sum of Geometric Sequences: a, ar, ar2, . . .

n∑
i=1

ai =
a(1− rn)

1− r

∞∑
i=1

ai =
a

1− r

2.6.3 Sequences Heuristics

1. For recursive sequences, try and look for patterns

2. If no recursive formula is given, try writing an+1 in terms of an, an−1, etc. in inductive fashion.

3. Try to telescope and cancel out series

2.7 Sigma Notation

2.7.1 Common Sequences

• 1 + 2 + 3 + . . .+ n = n(n+1)
2 (triangular numbers)

• 1 + 2 + 22 + . . . 2n = 2n+1 − 1 (sum of powers of 2)

• 1 + 3 + 5 + . . .+ (2n− 1) = n2 (sum of odd numbers)

• 12 + 22 + 32 + . . .+ n(n+1)(2n+1)
6 (sum of squares)

• 13 + 23 + 33 + . . .+ (n(n+1)
2 )2 (sum of cubes)

2.7.2 Sigma Properties

Definition: We use the uppercase Greek letter Sigma to denote summation in the following way:

n∑
i=1

xi = x1 + x2 + . . . xn

Theorem: Sigma Properties:

n∑
k=1

cak = c
∑

k = 1nak

n∑
k=1

(ak + bk) =
∑

k = 1nak +
∑

k = 1nbk

8



Julian Zhang 9

2.7.3 Sigma Methods

1. By grouping/pairing up (derivation of Gaussian Sum)

2. By elimination (derivation of Geometric Series)

s = a+ ar + ar2 + . . .

−rs = ar + ar2 + ar3 + . . .

3. By telescoping

4. By recursive counting

2.8 Inequalities

2.8.1 AM-GM

Theorem: AM-GM:

NOTE: This is a special case of Jensen’s Inequality

x1 + x2 + · · ·+ xn

n
≥ n

√
x1x2 · · ·xn

2.8.2 Cauchy-Schwartz

Theorem: AM-GM:

NOTE: This is a special case of Holder’s Inequality

(a21 + a22 + · · ·+ a2n)(b
2
1 + b22 + · · ·+ b2n) ≥ (a1b1 + a2b2 + · · ·+ anbn)

2,

9
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3 Number Theory

3.1 Bases

Definition: In base n, the largest possible value of a digit is n− 1. A number x in base n is written
as xn, and the numerical value of akak−1 · · · a0 is

akn
k + ak−1n

k−1 + · · · a0

3.2 Divisibility

Theorem: Fundamental Theorem of Arithmetic:

Every integer greater than 1 either is a prime itself or is the product of prime numbers. This product
is unique up to the reordering of the factors. The general form is written as

n∏
i=1

peii

where pi are distinct primes and ei are nonnegative integers.

Definition: Let a =
∏n

i=1 p
di
i , and b =

∏n
i=1 p

ei
i , then

gcd(a, b) =

n∏
i=1

p
min(di,ei)
i

(a, b) =

n∏
i=1

p
max(di,ei)
i

Theorem: Divisibility over Bases

Given a number x = akak−1 · · · a0 = akn
k + ak−1n

k−1 + · · · a0, in base n:

1. n− 1 | x if and only if n− 1|a0 + a1 + . . .+ ak (sum of digits)

2. n | x if and only if a0 = 0

3. n+ 1 | x if and only if n+ 1|a0 − a1 + . . .+ (−1)kak (alternating sum)

This can be generalized to factors of n− 1 and n+ 1.

10
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3.3 Diophantine Equations

Theorem: Bezout’s Identity

If d = gcd(a, b) then there always exist integers x and y such that

ax+ by = d

Moreover, the integers of the form az + bt are exactly the multiples of d. Many other number theory
theorems, such as Euclid’s Lemma and the Chinese Remainder Theorem are results of this identity.

Solve 55x− 169y = 1 using the Euclidean Algorithm:

169 = 3× 55 + 4

55 = 13× 4 + 3

4 = 1× 3 + 1

Since 4 and 3 are co-prime, we begin back-substitution:

4 = 1× 3 + 1 =⇒ 4− 1× 3 = 1

4 = 1× (55− 3× 4) = 1 =⇒ 14× 4 = 1× 55 = 1

14× (169− 3× 55)− 1× 55 = 1 =⇒ 14× 169− 43× 55 = 1

(x, y) = (−1806 + 169k,−58 + 55k), k ∈ Z

3.3.1 Common Factoring Motifs

Suppose n = 250 · 327 · 515 · 77

• Number of positive divisors: (50 + 1)(27 + 1)(15 + 1)(7 + 1)

• Number of perfect square divisors: (⌊ 50
2 ⌋+ 1)(⌊ 27

2 ⌋+ 1)(⌊ 15
2 ⌋+ 1)(⌊ 7

2⌋+ 1)

• Product of positive divisors: n
d
2 , paired

• Sum of divisors: (1 + 2 + 22 + . . . 250)(1 + 3 + . . . 328)(1 + 5 + . . . 515)(1 + 7 + . . . 77)

= (251 − 1)( 3
28−1
2 )( 5

16−1
4 )( 7

8−1
6 )

3.4 Mods

Theorem: Mod Properties: Let a ≡ b(modn), and c be a positive integer. Then,

(a) a+ c ≡ b+ c (mod n)

(b) a− c ≡ b− c (mod n)

(c) ac ≡ bc (mod n)

(d) ac ≡ bc (mod n)

(e) a+ b ≡ (a mod n) + (b mod n) (mod n)

11
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(f) ab ≡ (a mod n)(b mod n) (mod n)

(g) If gcd(c, n) = 1 and dc ≡ ec (mod n), then d ≡ e (mod n)

(h) if k|a, k|b, and k|n, then a
k ≡ b

k (mod n
k )

3.4.1 Prime Mods

Theorem: Fermat’s Little Theorem:

Let p be a prime number, and a be an integer such that gcd(a, p) = 1. We have that:

ap−1 ≡ 1 mod p

Theorem: Wilson’s Theorem

For any prime number p, we have that

(p− 1)! ≡ 1 mod p

Theorem: Euler’s Totient Theorem

Define φ : N → N such that φ(n) is the number of integers 1 ≤ k ≤ n such that gcd(k, n) = 1.
Let n > 1 be a positive integer and a be an integer such that gcd(a, n) = 1, then

aφ(n) ≡ 1 mod n

3.4.2 Quadratic Residues

Definition: Given q and n and that the equation x2 ≡ q( mod n) has a solution, then q is called the
quadratic residue modulo n.
If this equation does not have a solution, then q is called the quadratic non-residue modulo n.

• For example, x2 ≡ 9 mod 15 has a solution x = 12, hence 9 is a quadratic residue mod 15.

• On the other hand, the equation x2 ≡ 11 mod 15 has no solution, hence 11 is a quadratic
non-residue mod 15.

• In simpler terms, an integer q is a quadratic residue mod n if a square can take the form (nk+q)
for some positive integer n.

Theorem: Quadratic Congruences with Prime Mods: If p is a prime, then

x2 ≡ a mod (p)

has a solution if and only if

a
p−1
2 ≡ 1 mod p

12
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3.4.3 Chinese Remainder Theorem

Theorem: Chinese Remainder Theorem: The system of linear congruences:

x ≡ a1 mod n1

x ≡ a2 mod n2

x ≡ a3 mod n3

. . .

x ≡ ak mod nk

Has a solution if and only if
gcd(ni, nj)|(ai − aj)

for every i! = j. In such a case, there is a unique solution modn when n is the least common multiple
of n1, n2, . . . nk

CRT applications: Solve the system of modular congruences:

x ≡ 1 mod 2

4x ≡ 3 mod 5

First simplify the second equation to x ≡ 3× 4 ≡ 2 mod 5. Now we have

x ≡ 1 mod 2

x ≡ 2 mod 5

Then let x = 2a+ 1 = 5b+ 2. A clear solution for (a, b) is a = 3, b = 1. Then, x = 7 is one solution to the
system, so x ≡ 7 mod 2× 5 = 10 is the set of all solutions.

If m and n are not relatively prime, then let gcd(m,n) = g. We split the system as follows:

x ≡ a mod
m

g

x ≡ a mod g

x ≡ b mod g

x ≡ b mod
n

g

Then, we must check that a ≡ b mod g. If so, simply ignore the 3rd congruence. Now, we have:

x ≡ a mod
m

g

x ≡ a mod g

x ≡ b mod
n

g

Now we have a system of 3 congruences, which we can solve for. If gcd(mg , g) is not 1, then repeat the
decomposition. Essentially, decompose until we get a system of pairwise relatively prime congruences. Then
solve.

13
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4 Combinatorics

4.1 Permutations vs Combinations

Definition: The total number of permutations of k elements taken from a set of n elements (without
repetition) is commonly denoted nPk:

nPk = n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!

where n! = 1× 2× · · · × n is the factorial of n.

Definition: The total number of combinations of k elements taken from a set of n elements (without
repetition) is commonly denoted nCk. In fact, combinations are so likely to come up in contests that
we have a special notation for them:

(
n
k

)
.

nCk =

(
n

k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)

k!
=

n!

k!(n− k)!

4.2 Stars and Bars

Theorem: Stars and Bars:

The number of ways to place n indistinguishable balls into k labelled urns is(
n+ k − 1

n

)
=

(
n+ k − 1

k − 1

)
The number of solutions in nonnegative integers to the equation x1 + x2 + · · ·+ xk = n is(

n+ k − 1

n

)
=

(
n+ k − 1

k − 1

)

4.3 Expected Value

Definition: Expected Value: Let X be an event, then

E(X) =
∑
i

P (xi)V (Xi)

where P (xi) is the probability of the event and V (Xi) is the value assigned to the event.

Properties:

1. (Linearity) Let a be a constant and X,Y be two events, then E[aX + Y ] = aE[X] + E[Y ].

2. If X and Y are two independent events, then E[XY ] = E[X]E[Y ]

14
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4.4 Other Combo Tools

4.4.1 Pigeonhole Principle

Theorem: Pigeonhole Principle:

It is impossible to place n+ 1 pigeons in n holes without having one hole contain 2 or more pigeons.

Pigeonhole Applications:

• From any n+ 1 positive integers we can choose two so that their difference is divisible by n.

• If vertices of a triangle are in a rectangle (including the case they are on its sides), then the
triangle’s area is at most half of the rectangle’s area.

4.4.2 Principle of Inclusion-Exclusion

Theorem: Principle of Inclusion-Exclusion (2 variables)

|A ∪B| = |A|+ |B| − |A ∩B|

4.4.3 Recursive Counting

• Suppose the set of objects is f(n). A common trick is to relate f(n) to f(n − 1) and possibly other
previous terms.

• State: A description of an intermediate stage of an event.

• Random Walk: Processes in which a person or thing is moving around some universe.

4.4.4 Generating Functions

Combinatorics problems will often ask to determine a certain sequence of numbers a0, a1, a2, . . . A common
technique to solve this type of problem is to encode this sequence as a (possibly infinite) polynomial,

f(x) =

∞∑
k=0

akx
k

where the solution to the problem is one of the coefficients to the nth degree x term.

15
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5 Geometry

Theorems to memorize:

• Ptolemy’s

• Ceva’s

• Stewart’s

• Shoelace

Strategies for geometry:

1. Draw a diagram with all the information labelled

2. Draw auxiliary lines

3. Plug in formulas directly

4. Use Algebra: Introduce variables, set up equations, calculate something in different ways

5. Use Coordinates or Vectors

6 Methods of Proof

All full-solution math contests will require you not only to know what things are true, but also to prove why
they are true. Here are all the proof methods you will need for all high school math contests:

• Proof by Contradiction: Assuming that a false hypothesis is true, and proving that it causes
something impossible to be true.

Example: Proof that
√
2 is irrational

• Proof by Induction:

1. Base Case: Proving that something is true for x = 1

2. Induction Hypothesis: Assuming that something is true for a certain x = n

3. Induction Step: Using x = n to prove that the same statement is true for n+ 1

Example: Proof that 1 + 2 + . . .+ n = n(n+1)
2

• Proof by Deduction: The opposite of induction, deduction takes a general formula and specializes
it for a certain case.

Example: Most geometry problems

• Proof by Exhaustion: Splitting a hypothesis into all possible cases, and proving that it holds true
for every case.

Example: Casework

16
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